
JOURNAL OF APPROXIMATION THEORY 44, 295-314 (1985)

X-Splines of Odd Degree

RYSZARD SMARZEWSKI

Department of Numerical Methods,
M. Curie - Sklodowska University, 2()-{)31 Lublin, Poland

Communicated by Oved Shisha

Received December 17, 1982

1. INTRODUCTION

Recently Clenshaw and Negus [3] and Behforooz, Papamichael. and
Worsey [2] introduced a number of cubic X-splines in the class of all e I

piecewise-cubic polynomial interpolatory functions which present several
practical advantages in comparison with the conventional cubic splines. A
detailed discussion of these advantages can be found in [2, 3. 5. 8]. More
recently. Papamichael and Worsey [6] defined a class of e2 quintic X
splines and investigated convergence and smoothness properties of some X
splines in this class,

In this paper we define X-splines of degree 2n + 1 for a positive integer n.
More precisely, let L/ be an arbitrary partition of a compact interval
1= [a. b].

L/:a=xo<Xj< ... <xN=b.

Moreover. let us denote

hi=Xi-Xi_l and h=maxh i ·

In Section 2, we study convergence and smoothness properties of en
piecewise polynomial functions of degree 2n + 1 with breakpoints Xi which
interpolate a sufficiently smooth function j at points Xi' The main result of
this section consists in establishing a basic property of a piecewise
polynomial interpolatory function p which says that the order of the error
of approximation of j by P and the orders of jump discontinuities of sth;
s = n + 1..... 2n + 1. derivatives of p at interior knots Xi depend only on the
order of approximation of derivatives jU)(xi) by pUl(Xi); i = 0..... N.
j = 1•...• n. The results of this section are used in Sections 3 and 4 to define
the most general classes of periodic and nonperiodic X-splines of degree
2n + 1. respectively. The definitions of these classes depend on a number of
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free parameters. By specifying these parameters, we define four periodic and
nonperiodic X-splines PI-PIV of special interest and present error estimates
of approximation of/by these X-splines. The orders of jump discontinuities
of sth; s=n+ 1,..., 2n+ 1, derivatives of the X-splines PI-PIV at points Xi
are also presented. Each X-spline of special interest satisfies the following a
priori requirements:

(i) It ensures the maximal order O(h 2n +2) of convergence in the
class of all piecewise polynomial interpolatory functions of degree 2n + I;

(ii) its construction is simpler than the construction of the conven
tional spline of degree 2n + I;

(iii) it approximates the jth derivative of I at points Xi with the
orders O(h2n + 2 - j); j = 1,..., n;

(iv) it has a jump discontinuity of the sth derivative of the order
O(h2n+2~s); s=n+ 1'00" 2n+ 1.

2. PIECEWISE POLYNOMIAL INTERPOLATION

Let Pn,j be the linear space of all C piecewise polynomial functions P of
degree 2n + 1 or less with breakpoints Xi' Denote Ii = [xi_ I' X;],
t = (X - Xi_ dlhi and plj) = pU)(x;);j ~ n. Then by the Hermite interpolation
formula an element p of Pn,j can be expressed in the form

where

n

p(x) = I [p~J! I L i_ J.;(X) + pj!lLij(x)];
i=O

XEI i (2.1 )

and

n-j (n + v) .
Li_1jx)=(hflj!)(l_t)n+1 v~o v tJ+v (2.2)

(2,3 )

For a function! E C(I), denote the convex set of all functions P E Pn,j
interpolating!at L1 by Pn,A/). An example of a function P in Pn.Af) is the
piecewise Hermite function H satisfying the conditions

i=O,oo., N,j=O, ... , n.

Now suppose in addition that I E C2n + 2(1;) for each i and denote the linear
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space of all such f's by C"(I; A). Then it is well known that the error
associated with approximating f by H is of the form

f(x) - H(x) = f(2n +2)(~) w(x)/(2n + 2)1;

where ~ belongs to the interior f! of Ii and

w(x)= [(X-Xi_1)(X-X;)r+ 1.

Hence we have

xEIi (2.4)

Ilf - HII :::; (h/2fn+21If(2n+2)11/(2n + 2)1. (2.5)

In order to estimate If(x) - p(x)1 for pEPn"Af), we introduce the
notations

and

Aj =:~~ (n:v) 2-(n+ j+v)/j1.

Clearly, we have ejO) =0 and

Aj :::; (2-(n+ j)/j!) v~o (n: V) 2- V = 2-j/j!;

THEOREM 2.1. IffE C"(I; A) then

n

If(x)-p(x)l:::; L Ajhfmax{lej~II,le)j)l}
j~ 1

h2n +2
+ ..,..-,....,...,..,,-~ Ilf(2n+2)/I'

4n + 1(2n + 2)! '

j=O, ..., n.

for a piecewise polynomial function p in Pn,,1(f).

Proof By (2.5) it is sufficient to show that the term IH(x) - p(x)1 in
the inequality

If(x) - p(x)1 ~ IH(x) - p(x)1 + If(x) - H(x)\

can be bounded by the term with A's occuring in the desired estimate. By
virtue of (2.1)-(2.3) we have

n

IH(x)-p(x)l:::; L gj(x)max{lej~II,lejj)I}; XE!;
j~1
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where nontrivial and nonnegative polynomials gj of degree 2n + 1 or less
are equal to

Note that polynomials gj are symmetric with respect to the midpoint of Ii,
i.e., g;(x)=g;(Xi_ 1 +xi-x) for every x. This implies that the exact degree
dj of gj is 2n or less. Since gj((x i_ 1+ x i)/2) = Ajhf and g;(xi_ 1) = glxJ = 0,
the proof will be completed if one can show that

glz) = max gj(X)
XE Ii

where z = (Xi_I + x;)/2. Suppose this is false. Then by the symmetry of gj
there exist two distinct maxima z I' Z2 E I?\ {z} of gj' Thus,

i = 1, 2. (2.6)

On the other hand, the fundamental Hermite polynomial Li_l,j satisfies the
conditions

Li~ l,j(Xi- d = Jj, and Li~ I)X;) = 0; S = 0,..., n.

Consequently,

(5)( ) _ (-1)' (,)( ) - ~. - °gj X i - 1 - gj Xi -Vj" s- ,...,n. (2.7)

Now denote k:= min {dj , n}. Then a repeated application of Rolle's
theorem and relations (2.6)-(2.7) to polynomials gj!),oo., gjk-l) leads us to
the conclusion that the polynomial gjk) of degree k or less has at least k + 1
zeros in Ii' Thus gjk) == 0, which shows that dj < k. This contradiction
finishes the proof. I

The theorem shows that if the errors lIe U )lloo = maxieF) of approximate
values pF) of fU)(x;) are such that

then

j= 1,..., n (2.8)

where

IIf - pll = O(hi')

,u=min{nl + 1'00" nn+n, 2n+2}.

(2.9)
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In particular, the best order O(h 2n + 2) is achieved in (2.9) if
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for all i.

Now, we also show that jump discontinuities of the jth derivative of
pEPn d (f) at interior knots x i defined by

d}j)(p) = p(j)(xi + 0) - p(j)(xi - 0); j = n + 1,..., 2n + 1

depend only on magnitude of lIe(j)llcc; i= 1,... , n. For this purpose, we
denote

__ s_n~(2n+1- i)(S- i-I)C(Sj-( 1)., . .,
J. S-J n-J

2n+ I

{3sj= L C(mj!(m-s)!,
m=s

(2.10)

where it is assumed that (- I)!! = 1, and start from the following two
auxiliary lemmas.

LEMMA 2.1. III E cn(I; LJ) then

I/(S)(z)-H(S)(z)1 ~}'sh7n+2-sll/(2n+2)11; s=n+ 1,..., 2n+ 1

where Z=Xi _ J +0, xi-O.

Proof The function

g(X) = [/(x)- H(x)] - [/(s)(z) - H(s)(z)] w(x)!w(s)(z); xEIi

has two zeros X k ; k = i-I, i of multiplicity n + 1. Hence from a repeated
application of Rolle's theorem it follows that g(s) has 2n +2 - s zeros in fl.
But we also have g(s)(z) = O. Therefore, by applying Rolle's theorem
2n+2-s times to g(s), ..., g(2n+l) we have g(2n+2)(O=0 for some ~Efl,

which is equivalent to

Moreover, in view of the formula (2) from [7, p. 245] we have

d
s

-

n

-

I

[ ( + )/ ](s) _ I n+J Xi - J Xi .
W (X) - (n + 1). hi dxs _ n _ I P n + I 2 X - 2 hi' XEI;
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where Pn + 1 is the Legendre polynomial relative to the interval [- 1, 1].
Hence by the fact that

p(s-n-I)(l)=(_l)S p(s~n-l)(_l)=( S ) (2s-2n-3)"
n+1 n+1 2n+2-s ..

we derive

w(S)(xJ = (-1 Yw(s)(Xi_l) = 2s- n- 1(n + 1)1 (2n +s2 _ s)
x (2s-2n-3)!!hln + 2 - s. (2.12)

Finally, inserting this to (2.11) we directly obtain the desired estimate. I

LEMMA 2.2. The Hermite fundamental polynomials satisfy

Vs) .(x. )=(-l)s+JVs)(x)=cc .hi,-s
r-l,.1 1-1 JI 1 SJ 1

and

Vs) .(x.)=(-I)s+JVs)(x. )=R .hi- s
{- 1•.1 1 IJ 1- 1 P 5J 1

for all i, j and s = n + 1,... , 2n + 1.

Proof From (2.3) we immediately obtain the equalities

L (s) ( )-( l)s+JL(S)( ). k-01k -1i-I.) X i - k - - ii X i - m , -" + m - .

In order to prove the remaining equalities we denote

(2.13)

(2.14 )

where t is as in (2.2). Now we claim that the coefficient asJ of the
polynomial gJ at t S is equal to

(
2n+ 1-1)(S-1-1)as) = ( - 1)s - n . .

S-J n-J
(2.15 )

for s = n + 1,..., 2n + 1 and j = 0, ..., n. Indeed, by making use of the binomial
formula to (2.2), we easily find that (2.15) holds for j = n and that gj can be
written in the form
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A comparison of appropriate coefficients on both sides of the last equality
gives

( l)n+l(2n-j)a2n+ l,j= - .n- }

and

. (2n - j)(n + 1)asj=as+l,j+l+(-IV-n . ; n+l~s~2n.
n- J s-n

Hence the proof of (2.15) can be easily finished by an induction with
respect to s. Moreover, the interpolation conditions Li!.-sljXi_ 1 ) =0sj;
s = 0, ..., n imply that asj = 0sj for s ~ n. This in conjunction with the
definition of gj gives

where as} are as in (2.15). Hence from the fact that t=(x-x;_d/h; we
deduce that the first terms in (2.13)-(2.14) are equal to the third ones. This
completes the proof. I

THEOREM 2.2. If f E C2n + 2(1) and pEPn,d(f) then

n

d(s)(p) = " {fJ hj-se(Jl -(X .[hi-S_(_l)s+jhj-S] eU)
I ~ 5J I /- t S} 1+ 1 {I

j~ 1

-(-l)S+jf3 h/-se(Jl }+d(s)(H)
S] 1+ 1 1+ I 1

and

for all s = n + 1,..., 2n + 1. Additionally, if the partition L1 is uniform and
fE C2n +3(I) then

for each even s.

Proof From the linearity of djs) it follows that
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Moreover, in view of (2.1}-(2.2) and from the fact that

we have

n=" {eU) Vs) .(x.)-eU)[(-h. /h.)i-S_l]f...J 1-1 I-I,] 1 I 1+ I 1

)=1

X L (S)(x ) - eU) L(S) (x)}
U i i+ 1 i+ l,j ./ i •

Hence by Lemma 2.2 we derive immediately the desired expression for
dISl(p). Since

IdIS'(H)1 ~ IH(s)(xi+O)- j<S)(xi+O)! + If(S)(xi-O)-H(s)(xi-O)\,

we obtain directly from Lemma 2.1 the first estimate for Idls)(H)I.
Additionally, if ,1 is the uniform partition and f E C2n + 3(1) then (2.4) in
conjunction with (2.10) and (2.12) implies that

dISl(H) = H(Sl(x i + 0) - H(s)(x i - 0) = Ysh2n +2-s[f2n + 2)(~i+ d

- j<2n+2 l(UJ

for every even s, where ~k E f1; k = i-I, i. Then, applying the mean value
theorem we derive the second estimate for Id~s)(H)I. I

From the last theorem we directly deduce that if the errors eU ) satisfy
(2.8) then

d~S)(p) = O(hl' - S); s=n+ 1,... , 2n+ 1 (2.16 )

where J.l =min {n 1 + 1,..., nn + n, 2n + 3} for the uniform partition ,1 and J.l
is as in (2.9) otherwise. In particular, the highest order O(h 2n +2- s) is
achieved here for a partition ,1 if

for every j.

3. PERIODIC X-SPLINES

Assume that a function f satisfies the conditions

s=O, ..., n. (3.1 )

Moreover, let the partition ,1, the function f and each piecewise polynomial
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function P in Pn•.1 be extended periodically on the whole real line. Denote
by qi = qik; k = n + 1,..., 2n + 1 the Lagrange interpolating polynomials of
degree k or less satisfying the conditions

v = i - r, ..., i - r + k (3.2)

where r=Entier (k/2) and i= 1,..., N. Clearly, qi can be expressed in the
form (2.1) and dls)(q;) = 0 for every s. Hence by repeating mutatis mutandis
the first part of the proof of Theorem 2.2 we obtain

n=" {p N-sE(j) -1:1. .[h!-S_(_I)s+Jh!-S] E(j)LJ Sj I I-I 5J l+ 1 I I

J=l

_(_I)s+Jn .h!-sE(j) }.
PSJ 1+ 1 1+ 1 ,

for each pEPn.Af), where

s=n+ 1,..., 2n+ 1 (3.3)

1= i-I, i, i + 1.

When n = 1, then these formulae for dls)(p) reduce to the formulae given
recently by Behforooz et al. in [2]. Thus (3.3) can be used to generalize
their definition of X-splines. More precisely, let 3Nn2 real numbers aV), bV)
and cifl; i = 1,..., N, j = 1,..., n, s = 1,..., n be given. Then we define Nn linear
functionals gjsl: en(I) -+ IR by

n

gls)(y)= L {aV)y(j)(xi_d+bV)y(jJ(Xi)+c~ly(j)(Xi+d}. (3.4)
J= 1

It is clear from (3.3) that the definition of the functionals glS) is an exten
sion of the defintion of the functionals dl n + S); S = 1,..., n.

DEFINITION 3.1. A piecewise polynomial function pEPn,aU) is called a
periodic X-spline of degree 2n + 1 if its parameters satisfy the conditions

and

s= 1,..., n

i = 1,..., N, s = 1,..., n.

(3.5)

(3.6)

EXAMPLE 3.1. Let p = PI E en(I) be the periodic X-spline obtained by
setting

and
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in (3.4) and (3.6). Then its parameters are given explicitly as

and (3.7)

This X-spline is called a diagonal periodic X-spline.

In order to define a periodic X-spline inC" + 1(I); 1~ I ~ n, we may use
(3.3). Indeed, a periodic X-spline p belongs to C"+I(I) if and only if

i = 1,..., N, s = n + 1,..., n + l. (3.8)

Note that by (2.10) all numbers !Y. sj occuring in (3.3) are integers. Since the
numbers !Y.mj are divisible by (m- j)l and (m- j)l is divisible by (m-s)!
for every, m, s, j such that m ~ s > j, we conclude that the numbers fJsj

occuring in (3.3) are also integers. Moreover, we have

s=n+ 1,..., 2n+ 1,j= 1,..., n

where the polynomial g of degree n is defined by

g(x)=(x+s)(x+s-1)'" (x+s-n)/(x+s- j).

(3.9)

This formula follows immediately from (2.10) and from the well-known for
mula for the (2n + 1 - s )th forward difference

2n+l-s (2n+ 1 )
Lf 2n + l - sg(0)= m~o (_1?n+l-s-m m -s g(m).

Since Lfng(O)/n! is equal to the leading coefficient of the polynomial g, the
formula (3.9) implies that

fJ = (_l)n + I (n + 1! (2n + 1- j).
n + I,J j! n + 1 ' j= 1,..., n. (3.10)

This in conjunction with (3.3)-(3.8) yields the following example of a
periodic X-spline in en + I (I).

EXAMPLE 3.2. Let P = Pn be the periodic X-spline with the coefficients
aifl, bifl and cifl defined as in Example 3.1 for every s> 1. Moreover, let the
remaining coefficients be defined by
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b(l) = -11 .[hj-n-I + (_l)n+ jhj - n- l ]
If n+I.J 1+ 1 1
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for i = 1,..., Nand j = 1,..., n. Then the parameters pls) for s < n are as in
(3.7). Furthermore, by inserting the coefficients into (3.4) and (3.6), we
conclude from (3.10) that the remaining undefined parameters pln ) can be
determined from the system of equations

where

i= 1,..., N (3.11)

(n)_ (n) -h /(h +h ) (n) _p(n)Po -PN' aj - j+1 j i+l, PN+I- I'

b j= ajqln)(x j_d+ (_l)n+ I(n + 1) qln)(x;) + (1- a;) qln)(x j+ d

+ (_1)n+1 ajhj n~l/3 .[h/-n-I(q(j)-q(j) )(x. ) (3.12)
+ 1 L, n + I.J 1 1 1 - 1 1- 1

n j=1

+ (_l)n+jh{:;:1-I(q~j)-q~11)(Xj+d]'

This system is strictly diagonally dominant. Thus the periodic X-spline PI!
is uniquely determined. Since (3.11) is equivalent to (3.8) for s=n+ 1, it
follows that PI! E en + 1(f).

The polynomials qj = qik occurring on the right side of (3.11) depend on
k; n + 1 :::;; k :::;; 2n + 1. Therefore, there are in fact n + 1 periodic X-splines of
the type PI! defined by (3.11) with the right sides bi =b ik dependent on k. In
particular, when n = 1 then

b i2 = b i3 = 3a j[fi_l, Ii] + 3(1 - ai)[fi, Ij+ I]

where [fj _I' fj] = (fj - fj _1)/hj is a divided difference of order 1. Thus the
definition of PI! for n = 1 is independent of k = 2, 3 and PI! coincides with
the well-known conventional periodic cubic spline.

Now we proceed to investigate convergence properties of periodic X
splines. For this purpose, suppose that rm = rm.k.i is the remainder term of
the Lagrange interpolation formula of degree k with knots Xv; v = i - r, ...,
i - r +k for the function (x - xj)m; k < m:::;; 2n + 1. Then

where the polynomial g of degree k or less is uniquely determined by the
conditions

v = i - r, ..., i - r + k



306 RYSZARD SMARZEWSKI

with r as in (3.2). Additionally, let R = Rki be the remainder term of the
same interpolation formula for the function

2n + 1

](x)=!(x)- L pm)(x;)(x-x;)m/mL
m=k+1

Then by the linearity of a remainder in Lagrange interpolation together
with the linearity of gis) we have

2n+ 1

giS)(f - qJ = L pm)(xJ gis)(rm)/m! + gis)(R) (3.13)
m=k+ I

for all ! E c2
n + 1(1). This formula will playa fundamental role in error

analysis for periodic X-splines, since it gives a useful expansion of the right
sides of the following equalities equivalent to (3.6):

i= 1,..., N, s= 1,..., n. (3.14)

From the definition of gis) we easily note that the right side of (3.13) is a
linear combination of quantities r~)(xjl) and R(J)(xjl)' where m = k + 1,...,
2n + 1, j = 1,..., nand J1 = i-I, i, i + 1. Since R is a remainder of the
Lagrange interpolation formula, it follows from Theorem 1 in Section 6.5 of
[4J that

(3.15)

where

Hence by Taylor's series expansion of pk+ 1)(11) at the point Xi and by
](2n + 2) = !(2n + 2) and ](J)(xJ = 0 for j = k + 1,..., 2n + 1 we have

. jC2n+2)(lT)(11_ xyn+l-kk- J

R(J)(xjl) = (k+l-j)!(2n+l-k)! vI]o (xjl-~v) (3.16)

for! E C2n + 2(1R), where X i _ r < (J < x i _ r+k' Consequently, we obtain

(3.17)

with a constant Cj independent of hand f Moreover, this constant can be
estimated as

k2n+ 2 - J

c~-------
J"" (k + 1- j)!(2n + 1- k)!
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Since rm is also a remainder of the Lagrange interpolation formula with the
same knots as R, it follows that r~)(xp) can be expressed in the form (3.15)
with f replaced by (. - x;)m. From this we conclude that

(3.18 )

where the constant Dj independent of h can be estimated as

Dj~km-f/(k+ 1- j)!.

We note that the upper bounds for Cj and D j are the simplest and at the
same time the largest ones. Since these bounds are sufficient for our pur
poses, we do not have to worry about decreasing them. Now we can
establish the following results concerning convergence and smoothness
properties of periodic X-splines PI and PH'

THEOREM 3.1. Let P = PI' PH be periodic X-splines for k = 2n + 1 inter
polating a c2n + 2-periodic function f with the period b - a. Then we have

with a constant C depending only on n. Additionally,

(3.19)

s=n+1,00.,2n+1 (3.20)

where it is assumed that s > n + 1 for P =PH'

Proof If P = PI' then

j= 1'00" n.

Since k=2n+ 1, it follows from (3.13)-(3.14) and (3.17) that

le~f)1 = IRU)(xJI ~ Cjh2n+2-fllf(2n+2)11; j= 1'00" n. (3.21)

Hence by Theorem 2.1 we obtain

If(x)- p(x)1 ~h2n+21Ip2n+2)11 Ltl AjCf +4-n- 1/(2n+2)l} XE!;,

which completes the proof of (3.19) for P = PI' Further, from (3.21) and
Theorem 2.2 we immediately conclude that (3.20) holds in this case. Now,
suppose that P= PH and k= 2n + 1. Then le}J)\;j= 1'00" n -1 have the same
estimates as in (3.21). Thus, in view of Theorems 2.1 and 2.2, it is sufficient
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to show that (3.21) holds also for j = n. For this purpose, let us note first
that the relations (3.14) can be written for s = 1 in the form

with e&n) = e~), where the a i are as in (3.12) and the C i are equal to hi

defined in (3.12) with qJ.l; fl = i-I, i, i + 1 replaced by f - qJ.l" Hence the
standard considerations (see, e.g., [1, p. 24]) lead to the conclusion

leln)1 ~ n -I max leil;
1 <;;i<;;N

1= 1,..., N. (3.22)

But the Ci are linear combinations of the quantities (f - qJ(J)(xJ.l) and
(f - qv)(J)(xJ; fl = i-I, i, i + 1, v= i-I, i + 1, which by virtue of
(3.13}-(3.14) and (3.17), have the same estimates as ell) in (3.21). This and
(3.22) imply that

leln)! ~ n-Ihn+ 2I1f(2n+ 2)11 [(n + 2) Cn+ 4~tll IPn + l,jIC/(n + 1)]

:= Cnhn+21Ip2n+ 2)11

where Pn+I.J are as in (3.10). Thus (3.21) holds for j=n and the proof is
completed. I

It is important to note that Theorem 3.1 is false for k ~ 2n. This is an
immediate consequence of (3.18), which implies that the estimates of the
right sides of (3.14) depend on the quantities gls)(rm); k+ 1~m~2n+ 1 of
order less than 2n + 2. We may partially avoid these difficulties by
introducing a new class of X-splines with coefficients a~), b~) and C&s)

satisfying the conditions

m = k + 1,..., 2n + 1. (3.23 )

Now we discuss the simplest case of such X-splines obtained for k = 2n.

EXAMPLE 3.3. Let P = Pm E C(I) be the periodic X-spline obtained by
setting

a~S) = 0
IJ '

b (s)- -'
ij - Ujs, C(S) - (j C

ij - js is

in (3.4) and (3.6), where the coefficients Cis are such that (3.23) holds. Then
we have

(3.24)
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Consequently, the conditions (3.5)-(3.6) give n systems of equations of the
form

for determining p~S), where p~)+ 1 = p~s). In addition, (3.23) implies that

(3.26)

By the Lagrange interpolation formula the remainder r 2n + 1 can be
expressed in the form

i+n

r2n+ l(X) = r 2n + 1,i(X) = n (x - x m )·
m=i-n

In particular, in the case n = 1, we have

(3.27)

i= 1'00" N.

Therefore, the system (3.25) is strictly diagonally dominant, which implies
the existence and uniqueness of the cubic X-spline PIlI (n = 1). Further, in
case n = 2, we obtain from (3.26)-(3.27) the formula

This shows that the systems in (3.25) are not strictly diagonally dominant
in general. However, when the partition L1 is uniform, then Cil = 2/3 for
n =2. Consequently, in this case the first system in (3.25) is strictly
diagonally dominant. Now, suppose that the partition L1 is uniform and
that n is a positive integer. Then the sth derivative of r2n+ 1 at Xi divided by
s! is an elementary symmetric function [9J of degree (j = 2n +1- s in the
arguments um=(x;-xi_rn)=mh; m= ±1,00., ±n. More precisely, we have

where the sum is extended to every combination of order (j of the numbers
-n, -n + 1'00" -1, 1,2'00" n without repetition and without permutation.
Since U_ m = -Urn' it follows that

and

s=2,4,00. (3.28)

640/44/4-2

s= 1, 3'00' (3.29)
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(3.30 )

Here the sum is extended to every combination of order (J/2 of the numbers
1, ... , n without repetition and without permutation. As an immediate con
sequence of (3.30) we get

Starting from the initial conditions

M 2n +IJ = (n!)2 and M 2n +1,2n+ I = 1,

(3.31)

(3.32 )

which follow directly from (3.30), we may compute step by step the positive
numbers M 2n + l ,s with the aid of formula (3.31) (Tablel). Next, let us
apply Leibnitz formula for the sth derivative of a product to the particular
product

Then, in view of (3.28)-(3.30), it can be found that

r~~)+ I)X i +d = (-1 )(<1-- 1l/2s(2n + 1) s!h<1M2n _ l,s_1 ,eO; s= 2,4,...

and

(s) ( )-(_I)(<1--2)/21h<1[ (+I)M -M ]. =13r2n + l,i X i +I - s. n n 2n-l,s 2n-l,s-2' S , ''''

where it is additionally assumed that M 2n _ l, _ 1 = 0 and Mil = 1. Hence by

TABLE I

Table of the Numbers M 2n + I"

S> 3 5 7

1 1 1
2 4 5 1
3 36 49 14 1
4 576 820 273 30
5 14400 21076 7645 1023
6 518400 773136 296296 44473
7 25401600 38402064 15291640 2475473
8 1625702400 2483133696 1017067024 173721912
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(3.26) in conjunction with (3.28)-(3.29) and (3.32) we deduce that the coef
ficients Cis; s= 1,..., n in (3.25) are independent of i and equal to

and

s=2,4, ...

Cis = M 2n + 1
,s ; s= 1, 3,....

(n + 1)nM2n - l •s - M 2n - 1•s - 2

(3.33 )

(3.34)

By aid of the last formula we may easily compute a table of the nonzero
coefficients Cis = Cisn (Table II). Finally, we note that construction of the
periodic X-spline Pm of degree 2n + 1 corresponding to the uniform par
tition involves solving Entier( (n + 1)/2) systems of equations of the type
(3.25) which are strictly diagonally dominant for X-splines of degree less
than 11 and equal to 13.

EXAMPLE 3.4. Let P = PIV E cn(I) be a periodic X-spline corresponding
to the following choice of its coefficients

a(s)- l: a
ij - Ujs is'

Ms)=().
1J jS'

where ais satisfies (3.23) for k = 2n. Then the parameters p~s) satisfy n
systems of equations of the form

where p~) = p~). Moreover, we have

__ (s) ( )/ (s) ( )
a is - r2n + 1 Xi r2n + 1 Xi - 1

TABLE II

Table of the Coefficients C;,

S
1 1/2
2 2/3
3 3/4
4 4/5
5 5/6
6 6/7

7 7/8

8 8/9

3

7/8
205/236
479/546

2478/2791
266681

297064

1141146

1258983

5

139/134
1036/1049

4201/4346

3739217

3906603

7

2473/2199

14037/13166
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where r2n + I is as in (3.27). Hence it is clear that all results from the
previous example remain valid under the additional assumption that cin

h i + I and X i + I are replaced by ais ' h i _ I and Xi_I' respectively. In par
ticular, if the knots Xi are uniformly spaced then a is = CiS"

THEOREM 3.2. Let f be a C 2n + 2-periodic function with the period b - a
and let p = PIlI' PlY be periodic X-splines of degree 2n + 1; n = 1, 2, 3, 4,6
interpolating f at uniformly spaced knots Xi' Then we have

and

s=n+ 1,..., 2n+ 1

with a constant C depending on n only.

Proof We prove the results for P = PIlI only, since the proof for PlY is
the same. For this purpose, denote by Aj the matrix of the jth system in
(3.25). This matrix is strictly diagonally dominant and its elements cij;
j = 1,..., n are independent of i. Therefore, we have

II A; 111 w :::; (1 - Cij) -I.

Hence by using (3.13H3.14) and (3.23H3.24) we obtain

le!jl/:::;(l-cij) 1 max IgVl(R)/
l~i~N

= max {IR}Qi(X/,)I: i = I,..., N, J1 = i, i + I}.

This, in view of (3.17), implies that IeV)1 have estimates of the form (3.21).
Finally, inserting these estimates into Theorems 2.1 and 2.2 we immediately
obtain the desired results. I

It would be interesting to determine all s's such that the sth system in
(3.25) is not strictly diagonally dominant in the case of uniformly spaced
knots Xi for an integer n> 8. Since by (3.34) we have Cil = n/(n + 1) < 1, it
follows from (3.31 )-(3.34) that this problem will be solved if we determine
all odd integers s; 1 < s :::; n such that the following inequality holds:

This is left as an open problem. Moreover, it is obvious that Definition 3.1
may be used to define a number of other particular periodic X-splines given
above and preserving the highest order of convergence. For example, we
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can define the X-spline P = Pv E en + 1(1) with parameters pjs) defined as a
solution of systems (3.25) and (3.11) for s = 1,..., n - 1 and s =n, respec
tively. Note that in this case Theorem 3.2 holds at least for n ~ 8.

4. NONPERIODIC X-SPLINES

Now we define nonperiodic X-splines for a function f such that at least
one condition in (3.1) is not satisfied. In this case, we change the definition
of polynomials qi = qik; i = 1,..., r-1, N +r - k + 1,..., N - 1 as follows:

(4.1 )

Analogously, we change the definition of rm = rm,k,i and R = R ki ; 1~ i < N
for the first r - 1 and the last k - r - 1 values of i.

DEFINITION 4.1. A piecewise polynomial function P E Pn,,1(f) is called a
nonperiodic X-spline of degree 2n + 1 if its parameters pjs) satisfy the con
ditions

and

i = 0, N, s = 1,..., n

i=l,..., N-l, s=l, ..., n

(4.2)

(4.3 )

where gjs) are as in (3.4).

If we set n = 1 in the above definition then in accordance with (2.10) and
(3.3 )-(3.4), we obtain the definition of cubic X-splines stated in [2, 3].
Similarly, if we insert

into Definition 4.1, then we obtain the definition of quintic X-splines which
were given recently in [6]. Moreover, by making use of Definition 4.1, we
can define the nonperiodic X-splines PcPn of degree 2n + 1 in a way similar
to that shown in the preceding section. We omit details here, since they
involve minor changes such as removing periodic end conditions and Nth
equations from the systems of equations defining the periodic X-splines PI
and Pn and joining the equalities p~) =f~) and p~) =f~) at the beginning
and the end of the sth system, respectively. Furthermore, by repeating
mutatis mutandis the considerations from Section 3, we conclude that
Theorem 3.1 holds for the nonperiodic X-splines PI and Pn interpolating a
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function IE C2n + 2(1). The values 11'); i = 0, N are not usually available in
practice. However, we may replace them by suitable approximations setting

i=O, N, s= 1,..., n. (4.2')

Then reasoning similar to that in the proof of (3.21) leads us to the con
clusion that ifIE c2n+ 2(1) then

i=O, N, s= 1,..., n.

Therefore, the choice of the end coefficients pis) preserves the highest order
of convergence of the nonperiodic X-splines PI and Pn to f This process
can be extended to define the nonperiodic X-splines PIlI and PIV with the
coefficients pis); i =n, , N - n as given in Examples 3.3 and 3.4 and with the
coefficients piS); i = 1, , n - 1, N - n + 1,..., N - 1 defined by

The end parameters piS); i=O, N can be selected here as in (4.2) or (4.2').
Obviously, ifIE c2n+ 2(1) then Theorem 3.2 holds for these X-splines.

Finally, we note that the method of proving Theorems 3.1 and 3.2 makes
it possible to compute the values of the constants in the estimates occurring
there. Clearly, this calculation can be done effectively for a few small values
of n only. In particular, such estimates will be given in our next paper for a
number of quintic periodic and nonperiodic X-splines.
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